How to Formulate with Stevia in Beverages & More

How to Formulate with Stevia in Beverages & More

Formulas For Success is a monthly educational series from our leading formulation experts that covers the basics and fundamentals of trends in product formulation. Each time we’ll be featuring an emerging ingredient or combination of ingredients and sharing the key tips you’ll need to discover your own formula for success.

Did you know that what we conventionally call “stevia” actually describes a family of 100+ glycosides that can be naturally extracted from the stevia leaf, each of which have their own unique properties and profiles? This breadth of variety with stevia is what can present challenges when it is used in formulation compared to more traditional sugar substitutes such as sucralose and aspartame. To help address these challenges and break down some of the complexities of formulating with stevia, we’ve compiled this starter’s guide for using stevia in beverage (and various other) product applications. This guide will focus on development of a thin beverage, the suggested usage levels for different stevia types, and how to choose the best stevia for such beverages (Note: As we’ll explain later, with thicker beverages, the max use levels for stevia will typically be higher).

What are the Maximum Usage Levels of Different Types of Stevia Types?

The chart below is a summary of maximum use levels for several stevia types, including our proprietary SoPure™ Stevia blends. These estimates allow for some minimally acceptable off-notes in taste, but this will vary based on the application and other ingredient interactions. For additional reference, an approximate sucrose equivalent value is provided for each type.

Stevia TypeEstimated Maximum Usage in WaterApproximate Sucrose Equivalence (%)
Reb A 60225ppm4.5
Reb A 80250ppm5.2
Reb A 97325ppm6-7
Reb A 98360ppm6.5-7.5
Andromeda400ppm7-8
Crest V600ppm9
Plus175ppm (as natural flavor)2.4

In addition to the stevia types listed above, SoPure™ Pegasus, Pinnacle, Reb D, and Reb M are a few premium varieties which do not have many off-notes and can be used at levels exceeding 600ppm. For guidance on the sucrose equivalence for these particular varieties, reference the graph below that illustrates Reb M’s estimated sucrose equivalency by usage level (ppm).

Approximate Sucrose Equivalence of Reb M by Usage Level

Approximate Sucrose Equivalence of Reb M Stevia by Usage Level
Source: Prakash et al.

How to Choose the Right Reb A

These days, Reb A is the most widely used type of stevia due to its pleasant sweetness and more economical cost. When formulating, it’s worth considering higher purity Reb A’s as they exhibit more sweetness and a cleaner taste compared to lower purity grades. As an example, if your product is currently using Reb A 50 or 60, you may consider switching to Reb A 97 or 98. Although the higher purity may cost more, this is offset because the higher grades have higher sweetness levels and thereby require lower use levels and concentrations. In effect, there is little, if any cost-in-use increase and as a bonus, the higher purity grades may result in a slightly cleaner taste.

Formulating For Smoothies, Jams, and Cookies

A thicker product such as a smoothie may be able to use Reb A 80 at 300ppm or more. The thickness of the drink affects how much and how fast stevia molecules get to the sweetness and bitter receptors on the tongue. The thicker the product, the longer it takes for the stevia to reach the receptors and if it does not get to the receptors before being swallowed, it’s possible not to taste any bitterness at all. A fruit jam may be able to use double the thin beverage use level and a dry application like a cookie may be able to use up to three times the thin beverage level.

Cost Efficiency in Formulation: Maximize Use of Low-Cost Reb A

In order to optimize cost-in-use of stevia for your product application, we recommend starting with determining the maximum use level of Reb A (keeping in mind that the stevia types that offer the best value for quality are likely Reb A 98 or Andromeda). For example, you might begin with 400ppm of Andromeda to get about 7 sucrose equivalents, and then decide you’d like a little more sweetness in the product and add 100ppm of Pinnacle to achieve your desired sweetness level. On the other hand, you could simply use approximately 450ppm of Pinnacle to get a similar product, but you’d be paying more for premium stevia. By starting the development process with Reb A, you can maximize use of the lower-cost stevias but still achieve desired quality and sweetness.

Other Factors: Solubility, Stability in High Temperatures, Shelf Life

In addition to all the variables already described, there are still other factors that should be considered when choosing the right types of stevia to use in formulation. In some cases, processing requires the stevia to be batched in concentrated form. For these scenarios, the solubility of the stevia should be measured. Reb A 80 and lower purities have a significantly higher solubility and should be considered for these types of applications, whereas Reb D doesn’t have a high solubility so should be avoided in concentrates. Another consideration is temperature. Will you be baking your cookie above 284° F? If so, you may not want to use Reb M as it becomes less stable above that temperature. When it comes to the shelf life of the product, stevia is more stable in ready-to-drink beverages when the pH is above 3. If your application is ready-to-drink and the pH is close to 3 or below, it would be prudent to monitor shelf life in real life conditions as the sweetness may degrade slightly over time. Our research has shown that accelerated conditions don’t truly replicate actual conditions but can provide some indication of stability. You may want to be proactive and include buffers in your formula to raise the pH level prior to a shelf life study.

Sugar Reduction vs. Complete Replacement

Stevia has a slightly later onset of sweetness than sugar and tastes sweet longer (reference the graph below that illustrates the sweetness intensity of different sweeteners over time). To best replicate the upfront sweet profile of sugar and HFCS, it is best to perform a sugar reduction. However, if a complete replacement is needed, we would recommend combining with another upfront sweetener like allulose or erythritol. If you’re interested in learning more about formulating stevia alongside acids, link to this post for deeper insights on this topic.

Source: Lindley et al.

Our Formulation Experts Are Here to Help

Ready to create your own formula for success? For assistance with stevia in beverage formulations, please contact us for a consultation. Depending on your application, intended sucrose and stevia levels, labeling requirements, and budgeted cost, we can provide personalized recommendations.

How to Balance Stevia With Acids in Sugar Reduction Formulations

How to Balance Stevia With Acids in Sugar Reduction Formulations

Formulas For Success is a monthly educational series from our leading formulation experts that covers the basics and fundamentals of trends in product formulation. Each time we’ll be featuring an emerging ingredient or combination of ingredients and sharing the key tips you’ll need to discover your own formula for success.

When reducing or replacing sugar with stevia in a food or beverage product, formulators must always keep in mind that stevia exhibits a later onset of sweetness compared to sugar. This particular property of stevia is important when understanding how its sweetness interacts with flavors from other ingredients. A leading example is that such products commonly pair their sweetness with sour or tart flavors that are produced by a vast variety of acids. In this edition of Formulas for Success, we will focus our attention on how to best harmonize the sweetness of stevia with different types of acids in your sugar reduction formulation.

The Importance of Acid in Sweet Formulas

Aside from sugar and other sweeteners, acids are some of the most common ingredients in sweet food and beverage products. In fact, they’re found in the vast majority of formulas with a sweetener in them. As such, acids have a significant impact on the amount of sweeteners applied in such formulations. Generally speaking, the higher the amount of acid, the more sweetener is needed. Our formulation experts have found that striking that right balance does not have to be difficult, but they advise product developers to be aware that adjusting sweetener levels is not a simple one-dimensional calibration. Making such alterations will often affect other parts of the formula as well.

Citric Acid and Malic Acid With Stevia

A common acid in many sugar beverages is citric acid. The time intensity profile of citric acid (see graph below) is more upfront and similar to that of sugar. If replacing a portion or all of the sugar in a formula with stevia, the acid level or type may also need to be adjusted for an optimal sweetness profile. Some formulas may need just a slight reduction in citric acid as the upfront acid impact can taste stronger if there is less sugar to balance it out. Another option we’ve found successful is to partially replace the citric with malic acid. Since the taste impact of malic acid comes later compared to citric acid, it acts as a better balance to the sweetness of stevia. If you are noticing a lingering sweetness in your formulation with stevia, we’d recommend adding an acid that has a later taste profile to offset the linger.

Source: Corbion

Sample Stevia Formulation with Citric Acid

Lemon Iced Tea with Stevia and Citric Acid

Below is a sweetened Iced Tea application that demonstrates how to both reduce and replace sugar entirely. In this example, a citric acid reduction helped balance out the later sweetness profile of stevia replacing sugar.

Full Sugar50% Reduced SugarSugar Free
Water87.63g93.5275g99.43g
HFCS 4211.82g5.91g0g
Med-Dark Instant Dark Tea Extract0.25g0.25g0.25g
Citric Acid0.2g0.195g0.19g
Lemon Lime Extract0.1g0.1g0.1g
Nascent SoPure™ Stevia Andromeda0g0.018g0.045g
Total100g100g100g

Dairy Formulation with Stevia and Lactic Acid

Yogurt with Stevia and Lactic Acid

In dairy applications, lactic acid is naturally included from milk. Since lactic has a late onset of acidity, it will help to mask some of the lingering sweetness of stevia. In our experience, our formulators have found that Reb M works very well for dairy applications. Since that glycoside offers a very clean taste profile, the lactic acid is effective for cutting the linger for a great tasting yogurt or flavored milk.

Vinaigrette Dressings & Pickled Products with Stevia

When reducing or replacing sugar with stevia in vinaigrette dressings and pickled products, adjustments to the acetic acid levels are recommended. The taste from acetic acid is likely to be rather strong as it is a very upfront acid. For such formulations, try experimenting with reducing the use levels of acetic acid to create a better balance with the sweetness of stevia.

Ready to create your own formula for success? Partner with us and learn more about other ways to optimize your stevia formulation with acids. Contact one of our expert consultants for your product development and formulation needs!

Nascent’s SoPure™ Stevia Attains FDA GRAS Status

Nascent’s SoPure™ Stevia Attains FDA GRAS Status

Nascent Health Sciences, LLC has received an FDA “No Questions” Letter for the Generally Recognized as Safe (GRAS) notification (GRN 983) of its SoPure™ steviol glycosides, effectively achieving the regulatory agency’s safety designation for SoPure™ Stevia as a food ingredient. The FDA had previously issued a “No Questions” Letter regarding the company’s SoPure™ Reb A steviol glycoside. This expands significantly upon that confirmation to now include the complete portfolio of SoPure™ steviol glycosides extracted and purified from the stevia leaf.

FDA Logo
SoPure™ Stevia Attains FDA GRAS Status

“We are very pleased to receive the FDA’s No Objection Letter regarding SoPure™ Stevia’s GRAS status,” says Hank Wang, Technical Director of Nascent Health Sciences. “This provides our manufacturing customers with confidence knowing that their stevia supply is not only grown naturally and sourced sustainably, but is also safe and backed by the most stringent regulatory approvals.”

SoPure™ Stevia is a trademarked family of commercial stevia products from the world’s largest manufacturer of all-natural stevia leaf extracts. SoPure™ has been successfully incorporated in formulations for a vast range of products across the globe including beverages, baked goods, sauces and condiments, tabletop sweeteners, confectionary products, dairy products, and personal care products.

To submit the GRAS notice to the FDA, Nascent partnered with GRAS Associates, a subsidiary of Nutrasource, to ensure regulatory compliance, substantiation of claims, and approval of labeling.

For more information about Nascent Health Sciences’ portfolio of stevia products, natural sweeteners and other sugar reduction ingredients, please contact one of our expert consultants.

Monk Fruit: How to Formulate With This Popular Natural Sweetener

Monk Fruit: How to Formulate With This Popular Natural Sweetener

Formulas For Success is a monthly educational series from our leading formulation experts that covers the basics and fundamentals of trends in product formulation. Each time we’ll be featuring an emerging ingredient or combination of ingredients and sharing the key tips you’ll need to discover your own formula for success.

Monk fruit, also known as Siraitia grosvenorii or Lo Han Guo, is a natural high-potency sweetener that is 100 – 250 times as sweet as sugar. It’s an ingredient commonly used by food & beverage product manufacturers for sugar reduction and replacement. In such applications, it comes with the added benefit of being labeled with fruit in the product name. When developing a product formulation with monk fruit extract, there are important considerations for formulators to keep in mind.

Benefits of Monk Fruit

In addition to being a zero-calorie sweetener, monk fruit extract is rich in Vitamin C as well as other nutrients that offer a variety of benefits:

  • Kaempferol, a flavonoid with antimicrobial and antioxidant effects
  • Triterpene glycosides, compounds that reduce the growth of tumor cells
  • Antioxidants mogroside I-V which inhibit oxidative damage
  • Cucurbitacins, compounds with anti-inflammatory effects
  • Polysaccharide fibers, which may lower cholesterol levels

The Monk Fruit Market

Among the variety of natural high-potency sweeteners, monk fruit is the second most popular among consumers, ranking behind only stevia. A recent International Food Information Council (IFIC) survey shows consumers are more likely to consume monk fruit over sucralose and other low-calorie options including aspartame, saccharin and more. The market size for monk fruit, estimated at $720M, is expected to steadily widen. Forecasts show a CAGR of 4.8% from 2020 – 2025, according to a recent IndustryARC report.

Consumer preference for monk fruit and stevia vs. other low calorie sweeteners

Monk Fruit Purity Levels

The main sweetener in monk fruit is the antioxidant mogroside V. The typical indicated range of this antioxidant is 10 – 90%. Nascent Health Science’s team of formulation experts continuously experiments with the full range of monk fruit purity levels and have found that the best overall value is most consistently at 40 – 50%. At that range, we’ve found a cleaner taste and higher sweetness than lower purity levels. Monk fruit at very high purity levels may taste slightly cleaner, but it comes at a significantly higher cost. We generally recommend starting with 50% purity as it is the most common level. We have found the maximum use level to be about 175 ppm for monk fruit at 50% purity. Beyond that, you’ll begin to notice too many off-notes, especially in the aftertaste, which some describe as “fruity ginger”.

Note: At the 50% level, monk fruit extract is not always clearly quantified, where different suppliers may have slightly different taste and sweetness profiles. At Nascent, we conduct thorough testing when choosing suppliers and regularly test quality to ensure consistency.

Regulatory Status of Monk Fruit

Monk fruit is currently approved in limited countries, including the US, Canada, China, Japan, South Korea, Australia, and New Zealand. However, its regulatory approvals are expected to expand globally to the rest of Asia and Latin America, while the EU is also anticipated to approve the extract soon. Monk fruit juice and concentrates are available to those countries that allow the fruit juice in finished products. The concentrate can be labeled as a natural flavor in FEMA-following countries when used below 60 ppm in a beverage. Other application usage limits can be found on the FEMA site.

Formulating With Monk Fruit And Stevia

It is reported in literature that monk fruit has synergy with stevia. However, we have not found significant synergy with the combination at our recommended use levels. We believe the perceived additional sweetness comes from how the sweetness intensity curve is shaped. Like many high-potency sweeteners, the sweetness graphs for stevia and monk fruit are curved and not the straight line you’d see with most bulk sweeteners.

To illustrate this, we use an example formula which originally had 300 ppm of stevia that was replaced with 200 ppm of stevia and 100 ppm of monk fruit. The lowered use level of stevia inherently provides higher sweetness per ppm of stevia as shown in the graph above. The 100 ppm point on the monk fruit is also on the steeper part of its curve. The monk fruit graph depicts mogroside V 50% in acid and has less of a sweetness plateau than stevia. Although the combination in this example does provide a sweetness increase, there appears to be less of a true synergy between the two ingredients and more so instead, they simply complement each other.

Successfully complementing monk fruit with stevia requires an understanding of monk fruit’s sweetness profile. It has a slower sweetness onset compared to most sweeteners, and can thereby prolong the sweetness impact when combined with other sweeteners. Such combinations help to mask the aftertaste you’d otherwise experience from other natural sugar alternatives. When researchers experimented with early formulations using stevia and monk fruit, they were likely using stevia high in stevioside and Reb A, forms of stevia which can produce off-notes at high usage levels. In such scenarios, the addition of monk fruit was sensible in helping to mitigate some of the aftertaste from stevia.

Since those early formulations with monk fruit and stevia, new better-tasting glycosides of stevia have become more widely available and commercialized. The benefits of monk fruit with stevia have diminished in favor of glycosides like Reb D and Reb M. However, there is still an overall sweetness boost benefit if Reb D and M are used at high levels. Monk fruit can be added to products that require high sweetness at a potential lower cost-in-use since the stevia sweetness plateaus at high usage levels (reference the graph below).

Sweetness Profile of Stevia, Monk Fruit and Sucrose

Sample Monk Fruit Application

A demonstration of an application utilizing monk fruit is presented below as mogroside V 50%. In this sugar-free jelly demonstration, the Nascent team replaced sugar utilizing a combination of sugar alcohol, Reb A stevia, and monk fruit.

Ready to create your own formula for success? Partner with us and learn more about formulating in new applications with monk fruit. Contact one of our expert consultants for your product development and formulation needs!

Nascent Bolsters Stevia Supply Amid COVID-19 Global Supply Chain Shortages

Nascent Bolsters Stevia Supply Amid COVID-19 Global Supply Chain Shortages

An upsurge in demand for sugar alternatives, coupled with production and logistical challenges posed by the COVID-19 pandemic, have caused significant supply chain disruptions for ingredients such as steviol glycosides, crystalline allulose, and erythritol. Product shortages have also caused longer lead times and prices have increased, further exacerbating matters for many manufacturers of food and beverage products dependent upon sweetener ingredients.

Here at Nascent, we have been focused on reinforcing the availability of our broad range of ingredients, including all grades of stevia from Reb A through Reb M — in both conventional and certified organic varieties — as well as a complete portfolio of 1:1 sugar replacement solutions. While some ingredient companies and suppliers have struggled with delays and shortages due to the continued fallout from COVID-19, we are pleased to inform customers that we are fully stocked on all stevia extracts, blends and flavors. Our inventory levels remain abundant in all our warehouses across the US, with dozens of metric tons of product available today.

Nascent Stevia Supply in US Warehouses

Nascent’s availability of supply is largely thanks to our continuous R&D efforts with Zhucheng Haotian Pharm Co., Ltd. (ZCHT), the world’s largest manufacturer of natural stevia extracts. Along with manufacturing economies of scale and its abundance of leaf supply, ZCHT couples high-efficiency extraction methods with high-yielding plant varieties to achieve the most economical and sustainable portfolio of targeted glycosides.

In addition to meeting supply shortages in this challenging market, Nascent has continued providing strategic consultation services with our customers on optimal formulation solutions, managing changing costs for ingredients and forecasting consumption trends.

For more information regarding our available ingredients and formulation advisory services, please reach out and connect with the Nascent Health Sciences team.

Stevia + Erythritol = A Sweet Classic

Stevia + Erythritol = A Sweet Classic

Formulas For Success is a monthly educational series from our leading formulation experts that covers the basics and fundamentals of trends in product formulation. Each time we’ll be featuring an emerging ingredient or combination of ingredients and sharing the key tips you’ll need to discover your own formula for success.

Similar to allulose, erythritol is a favorite low-calorie sweetener choice for many food & beverage manufacturers, and is widely used in formulations together with stevia. Erythritol is a sugar alcohol that is naturally occurring in fruits like grapes, peaches, pears and watermelons. It can also be found in mushrooms and fermented products such as beer, cheese, sake, soy sauce and wine. The typical process to produce erythritol involves using corn, enzymes, and a fermentation process. Our erythritol is strictly fermented from only non-genetically modified corn to meet the expectations of modern consumers for cleaner labels.

While erythritol is a sugar alcohol, it is distilled and produced in granulated and powdered form to replicate the form of table sugar and increase consumer adoption. When choosing erythritol for product formulation, especially in combination with stevia, it’s important to understand some of its key properties.

Properties of Erythritol

  • “Upfront” sweetener similar to allulose and sugar
  • Provides a sweetness level that is ~67.5% of sugar
  • Provides a sweetness level that is 9% higher than allulose
  • Less expensive compared to allulose
  • Non-caloric in nature (contains almost no calories)
  • Non-glycemic (will not spike blood sugar levels)
  • Heat stable (up to 160 F)
  • GRAS status by FDA
  • Non-carcinogenic
  • Antioxidant properties
  • Non-artificial (fermented) production process

Erythritol is an important tool in the food and beverage formulation arsenal due to its abundance of beneficial qualities. It provides a sweetness level that can largely replicate sugar and that is higher than that of allulose. Its heat-stable property makes it a favorable sugar replacement ingredient in baking applications. It’s non-caloric in nature and provides a path towards usage in keto/diabetic friendly applications. A particularly important consideration for many food & beverage makers is that erythritol is less expensive and more cost-effective than allulose. Finally, it has been granted “Generally Regarded as Safe” status by the United States FDA, permitting food and beverage formulators to utilize this ingredient in a wide variety of sugar reduction applications.

Erythritol Market Trends

In 2019, according to Innova Market Insights, erythritol accounted for 11% of food and beverage launches in US and Canada. It is more commonly used with stevia in North America compared to other sugar alcohols like maltitol and sorbitol, which are considered artificial due to the production process.

Erythritol vs. Other Sweeteners

The gastrointestinal impact of digesting erythritol is less than all other sugar alcohols and allulose, which provides a higher limit for formulation. The table below outlines how it compares to other bulk sweeteners in terms of production source, relative sweetness, calories and dosage limitations:

Bulk sweetener choices comparison table between allulose, erythritol, tagatose, xylitol and sorbitol

Formulation Example: Sugar Cookie Recipe

For demonstration purposes, we designed a test of erythritol vs. allulose in a sugar cookie formulation experiment. We created three batches of sugar cookies with each utilizing the same recipe, but one test version used only erythritol while the other test used only allulose. A traditional recipe utilizing sugar acted as the control for the experiment. All versions of the cookies baked at 350°F on the same tray for 13 minutes and rotated halfway through.

Erythritol vs. Allulose Sugar Cookie Test Results

The experiment yielded significant differences in the baking results. Both erythritol and allulose test cookies spread less than the traditional sugar cookie. The allulose test cookie browned more than the other recipes while the erythritol cookie didn’t show much browning. In our experiment, the two test cookies were 100% sweetened with either erythritol or allulose and both produced less than perfect results. Ultimately, what the demonstration showed was that in a true sugar-replacement scenario, such formulations require adjustments to the formula/recipe and baking process to account for the different properties of erythritol and allulose compared to sugar. We should also note that the levels we used in our experiment below may be above the GRAS levels, whereas a commercial formula would utilize a blend of both sweeteners to achieve a browning effect more similar to sugar.

Erythritol and Allulose Sugar Cookie Recipe (via sallysbakingaddiction.com)

Erythritol and Allulose Sugar Cookie Recipe Table

Erythritol Formulation Solutions

Nascent Health Sciences provides erythritol as a stand-alone ingredient or co-processed with stevia or monkfruit for various applications. Co-processing is vital for powdered applications as separation is likely to occur due to the particle size difference between erythritol and other powdered high-potency sweeteners. They are available as a direct 1:1 replacement for sugar, a 2X version, which is common for tabletop usage, and custom sweetness versions are also available upon request.

To read more about how erythritol complements stevia, visit our erythritol application support page

Need the recipe for the sugar cookie? Or ready to create your own formula for success? If you’re interested in learning more about formulating with erythritol and stevia, contact one of our expert consultants for your product development and formulation needs!

We'll be at SupplySide West in Las Vegas, October 25-28. Visit us at Booth #4655.

X